مقایسه عملکرد بهسازی زیستی خاک‌های ماسه‌ای به روش تزریق و روش جاری‌شدن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس، دانشکده علوم ضایه، گروه زمین شناسی مهندسی، تهران، ایران

2 استاد گروه زمین شناسی مهندسی دانشگاه تربیت مدرس

3 سازمان مشاور فنی و مهندسی شهرداری تهران، خیابان حافظ شمالی، ساختمان معاونت فنی و عمرانی شهرداری تهران، تهران - ایران

چکیده

بهسازی زیستی بعنوان یک روش بهسازی دوستدار محیط زیست معرفی شده است. رسوب میکروبی کربنات کلسیم القاشده پرکاربردترین روش در این شاخه می‌باشد. روش تزریق، تزریق سطحی یا جاری‌شدن ثقلی، غوطه‌وری و روش مخلوط چهار روش معرفی شده برای روش مذکور هستند. از بین این روش‌ها، روش تزریق و روش جاری‌شدن اهمیت و جایگاه مهمتری دارند. در این مطالعه کارایی و عملکرد این دو روش در خاک با دانسیته‌های نسبی مختلف در احجام مختلف تزریق سوسپانسیون باکتری مورد بررسی قرار گرفت. برای بررسی راندمان و تأثیر این روش‌ها آزمایش‌های دانسیته اپتیک، فعالیت اوره‌آزی، نفوذپذیری، مقاومت تک‌محوری ودرصد کربنات کلسیم انجام شد. نتایج نشان داد در روش جاری‌شدن راندمان و کارایی باکتری در دانسیته‌های نسبی پایین نسبت به روش تزریق کاهش می‌یابد. لیکن روش جاری‌شدن به دلیل آسان‌تر بودن اجرای آن، عدم نیاز به تجهیزات خاص در اجرا‌، کاهش کمتر مقدار تراوایی، پراکندگی یکنواخت‌تر سیمان حاصله، تأمین مقاومت مشابه روش تزریق در حجم تزریق برابر حجم حفرات در دانسیته نسبی‌های بالا در نهایت روش مناسب‌تر و با صرفه اقتصادی مطلوب‌تر جهت بهسازی خاک‌های ماسه‌ای می‌باشد. در دانسیته نسبی‌های پایین روش جاری شدن علیرغم اجرای ارزان آن، جهت تأمین مقاومت مشابه با روش تزریق نیاز به دفعات بیشتر تزریق در حجم تزریق دو سوم و یک سوم حجم حفرات دارد که همین مورد باعث می‌گردد بهسازی هر دو روش از لحاظ اقتصادی تفاوت آنچنانی در آزمایشگاه با هم نداشته باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The comparison of the performance of biological improvement in sandy soils by the injection and the flow-through methods

نویسندگان [English]

  • Hamid Abedi 1
  • Mashallah Khamechian 2
  • Reza Hasn Sajedi 1
  • Mohammad Reza Nikudel 1
  • Karim Roshanbakht 3
1 Department of Engineering Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, I.R. Iran
2 Prof. of engineering Geology Tarbiat Modares University
3 Technical Engineering Consulting Organization of Tehran Municipality
چکیده [English]

Bio-improvement has been identified as an environmentally friendly method, Microbially Induced Calcium Carbonate Precipitation (MICP) is the predominant technique in this domain. The four main methods introduced for MICP are the injection, surface injection or flow-through, immersion, and mixed methods. Among these, the injection and the flow-through methods hold particular significance. In this study, the efficiency and performance of these two methods were investigated in soils with different relative densities and varying volumes of bacterial suspension injection.To assess the efficacy of these methods, various tests including optical density, urease activity, permeability, uniaxial strength, calcium carbonate pericipitation percentage were conducted. The flow-through method, with its easier implementation, absence of the need for special equipment, minimal reduction in permeability, more uniform dispersion of the resulting cement, and the ability to achieve comparable strength to the injection method when using an injection volume equal to the pore volume in high relative density, stands out as the more suitable and economical approach for improving sandy soils. Despite its cost-effective implementation, the flow-through method necessitates more injection cycles, particularly in the injection volume of two-thirds and one-third of the pore volume, to achieve the same strength as the injection method. This aspect diminishes the economic difference between improvement using the injection method and the flow-through method in laboratory. This aspect diminishes the economic difference between improvement using the injection method and the flow-through method in a laboratory conditions.

کلیدواژه‌ها [English]

  • Microbial induced calcite precipitation
  • Injection
  • Surface injection of Flow-through
  • Relative density
  • Bio-improvement
باغبانان ع.، رمضانی فر ف.، هاشم الحسینی ح. و رازانی م. (1395)، امکان سنجی استفاده از دوغاب زیستی برای تثبیت ماسه‌های روان در مناطق کویری با رویکرد حفاظت از بقایای باستان شناسی، پژوهه باستان سنجی، سال دوم، شماره اول، بهار و تابستان 1395، 27-17.
بلوری بزاز م.، بلوری بزاز ج. و کرابی س.م. (1400). مقایسه‌ی تأثیر نوع محیط کشت باکتری Sporosarcina Pasteurii بر میزان و نوع رسوبات کربنات کلسیم در جهت بهسازی خاک‌های دانه‌ای، نشریه مهندسی عمران امیرکبیر، دوره 53، شماره 7، ، صفحات 3029 تا 3050. DOI: 10.22060/ceej.2020.17631.6630
روشن بخت  ک.،  خامه‌چیان م.، حسن ساجدی ر. و نیکودل م.ر. (1394). بهسازی خاک‌های ماسه‌ای با رسوب زیستی کربنات کلسیم و فاکتورهای موٍثر بر آن، مجله انجمن زمین شناسی مهندسی ایران، بهار و تابستان 1394، جلد هشتم، شماره 1 و 2، صفحه 1 تا 12.
سهرابی ن. و حق پرست م. (1397). بررسی تأثیر نوع ریزدانه بر بهسازی بیلوژیکی خاک ماسه‌ای، نشریه زمین شناسی‌، جلد دوازدهم، شماره 4، زمستان 1397.
کرمی س.، خزائی ج.، شریفی پور م. و روح الله شریفی ر. (1401). بهسازی و تثبیت خاک‌های نرم و سست ریزدانه به روش رسوب‌زایی زیستی کربنات کلسیم (مطالعه موردی: خاک ریزدانه دانشکده کشاورزی کرمانشاه) ، نشریه مهندسی عمران امیرکبیر، دوره 54، شماره 9، صفحات 3217 تا 3242. DOI: 10.22060/ceej.2022.18917.6997
مدرس نیا ا.ر.، میر محمد صادقی م. و جلالیان ا. (1400). بررسی تأثیر بهسازی میکروبی در کاهش فرسایش پذیری بادی خاک‌های منطقه بیابانی سگزی اصفهان، نشریه علوم آب و خاک، سال بیست و پنجم، شماره چهارم، زمستان 1400.
Achal V., Mukherjee A., and Reddy M.S. (2011a). Microbial concrete: way to enhance the durability of building structures, Journal of Materials in Civil Engineering 23 (6) 730–734. https://doi.org/10.1061/ (ASCE)MT.1943-5533.0000159.
Achal V., Pan X., and Özyurt N. (2011b). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol. Eng. 37 554–559. https://doi.org/10.1016/j.ecoleng. 2010. 11. 009.
Almajed A., Tirkolaei H. K., Kavazanjian E., and Hamdan N. (2019).  Enzyme induced biocemented sand with high strength at low carbonate content, Scientific Reports, vol. 9, p. 1135. https://doi.org/10.­1038/ s41598-018-38361-1.
Al­ Qabany A., Soga K., and Santamarina C. (2012). Factors affecting efficiency of microbially induced calcite precipitation, J. Geotech. Geoenviron. Eng. 138 (8) 992–1001. https://doi.org/10.1061/(ASCE) GT.1943-5606.00006.
Al Qabany A., and Soga K. (2013). Effect of chemical improvement used in MICP on engineering properties of cemented soils, Géotechnique 63(4) 331. https://doi.org/10.1680/geot.SIP13.P.022.
Cheng L., Shahin M.A., and Mujah D. (2016). Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization, J. Geotech. Geoenviron. Eng. 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Cheng L., Shahin M. A., Cord-Ruwisch R., Addis M., Hartanto T., Elms C.(2014). Soil stabilisation by microbial induced calcium carbonate precipitation:investigation of some important physical and environmental aspects. In: 7th International Congress on Environmental Geotechnics, Australia.
Cheshomi A., Mansouri S., Amoozegar M.A., (2018). Improving the Shear Strength of Quartz Sand using the Microbial Method, Geomicrobiology Journal, DOI: 10.1080/01490451.2018.1462868
Choi S.G., Chang I., Lee M., Lee J.H., Han J.T., and Kwon T.H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers, Journal of Construction and Building Materials, 246 1-14. https://doi.org/10.1016/j.conbuildmat.2020.118415.
Choi S. G., Wu S., and Chu J. (2016). Biocementation for Sand Using an Eggshell as Calcium Source, J. Geotech. Geoenviron. Eng. 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
Chou, Chiung-Wen. (2007). Bioimprovement of geotechnical properties of sandy soils. Master of Civil Engineering     thesis, University of Maryland.DeJong J.T., Fritzges M.B., and Nüsslein K. (2006). Microbially induced cementation to control sand response to undrained shear, Journal of Geotechnical and Geoenvironmental Engineering 132 (11) 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong J.T., Mortensen B.M., Martinez B. C., and Nelson D.C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36: 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
DeJong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L. A., Al Qabany, A., Aydilek, A., Bang, S. S., Burbank, M., Caslake, L. F., Chen, C. Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., … Weaver, T. (2013). Biogeochemical processes and geotechnical applications:Progress, opportunities and challenges. Geotechnique, 63(4), 287–301. https://doi.org/ 10.1680/ geot.SIP13.P.017
Deng X., Yuan Z., Li Y., Liu H., Feng J., and de Wit B. (2020). Experimental study on the mechanical properties of microbial mixed backfill, Construction and Building Materials 265 120643. https://doi.org/ 10.1016/j.ijmst.2022.01.010.
Dhami N. K., Reddy M. S., and Mukherjee A. (2013). “Biomineralization of calcium carbonates and their engineered applications: a review,” Frontiers in Microbiology, vol. 4, p. 314. 10.3389/fmicb.2013. 00314.
Feng K., and Montoya B.M. (2015). drained shear strength of MICP sand at varying cementation levels, in: IFCEE, (2015) 2242–2251. https://doi.org/10.1061/9780784479087.208.
Feng K., and Montoya B. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading, Journal of Geotechnical and Geoenvironmental Engineering 142 (1) 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Ferris F.G., Phoenix V., Fujita Y., and Smith R.W. (2004). Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 ͦC in artificial groundwater, Geochim. Cosmochim. Acta 68 (8) 1701–1710. https://doi.org/10.1016/S0016-7037(03)00503-9.
Fujita, Y., Taylor J. L., Gresham T. L. T., Delwiche M. E., Colwell F. S., Mcling T. L., Petzke L. M., and Smith R. W. (2008). Stimulation of microbial urea hydrolysis in groundwater to enhance calcium carbonate precipitation. Environ. Sci. Technol. 42 (8), 3025–3032. https://doi.org/10.1021/es702643g.
Ginn T., Murphy E., Chilakapati A., and Seeboonruang U. (2001). Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media, Journal of Contaminant Hydrology 48 (1–2) 121–149. https://doi.org/ 10.1016/S0169-7722(00)00168-6.
Gu J., Suleiman M.T., Bastola H., Brown D.G., and N. Zouari. (2018). Improvement of sand using microbial-induced carbonate precipitation (MICP) for wind erosion application, in: IFCEE, 2018, pp. 155–164, https://doi.org/10.1061/9780784481592.016.
Hammad I., Talkhan F., and Zoheir A. (2013) Urease activity and induction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841, Journal of Applied Sciences Research 9 (3) 1525–1533.
Han Z., Cheng X., and Ma Q. (2016). An experimental study on the dynamic response for MICP strengthening liquefiable sands, Earthquake Engineering and Engineering Vibration 15 (4) 673–679. https://doi.org/10.1007/s11803-016-0357-6.
Harkes M.P., van Paassen L.A., Booster J.L., Whiffin V.S., and van Loosdrecht M.C.M. (2010).  Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 36, 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
Harkes M., Booster J., van Paassen L., van Loosdrecht M.C., and Whiffin V. (2008). Microbial induced carbonate precipitation as ground improvement method–bacterial fixation and empirical correlation caco3 vs strength, in: 1st International Conference on Bio-Geo-Civil Engineering, Delft, The Netherlands, 37-44.
Hongxian G., Dongrun L., Ruinan M., and Xiaohui C. (2019). Oedometer test of calcareous sands solidified using the MICP mixing method, Journal of Tsinghua University (Science and Technology) 59 (8) 593–600. https://doi.org/10.16511/j.cnki.qhdxxb.2019.21.018.
Ivanov, V., and Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology,  7 (2), 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jiang N-J., Soga K., and Kuo M. (2017). Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures, Journal of Geotechnical and Geoenvironmental Engineering 143 (3). https://doi.org/10.17863/CAM.24.
Jiang N. J., and Soga K. (2017). the applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures, Géotechnique 67 (1) 42–55. https://doi.org/10.1680/ jgeot.15.P.182.
Karimian A., Hassanlourad M., & Karimi Gh. R. (2020). Insight into the Properties of Surface Percolated Biocemented Sand, Geomicrobiology Journal, 2021, VOL. 38, NO.2, 138-149. https://doi.org/10.1080/ 01490451.2020.1818147
Kim D., Park K., Kim D. (2014). Effects of Ground Conditions on Microbial Cementation in Soils. Materials, 7: 143-156. https://doi.org/10.3390/ma7010143
Kucharski E.S., Cord-Ruwisch R., Whiffin V., and Al-thawadi S.M. (2012). Microbial biocementation, US Patent 8,182,604 B2.
Lamas F., Irigaray C., Oteo C. Chacon J., (2005). Selection of the most appropriate method to determine the carbonate content for engineering purposes with particular regard to marls, Engineering Geology, Volume 81, Issue 1, September 2005, Pages 32-41
Lin H., Suleiman M.T., and Brown D.G., Kavazanjian Jr E. (2016). Mechanical behavior of sands treated by microbially induced carbonate precipitation, Journal of Geotechnical and Geoenvironmental Engineering 142 (2) 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Liu J., Li G., and Li X. (2021). Geotechnical Engineering Properties of Soils Solidified by Microbially Induced CaCO3 Precipitation (MICP), Review Article, Advances in Civil Engineering, Volume 2021, 1-21. https://doi.org/10.1155/2021/6683930.
Maleki M., Ebrahimi S., Asadzadeh F., and Tabrizi M.E. (2016). Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil, International Journal of Environmental Science and Technology 13 (3) 937–944. https://doi.org/10.1007/s13762-015-0921-z.
Montoya B., and DeJong J. (2015).  Stress-strain behavior of sands cemented by microbially induced calcite precipitation, Journal of Geotechnical and Geoenvironmental Engineering 141 (6) 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Mujah D., Shahin M.A., and Cheng L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization, Geomicrobiology Journal 34 (6) 524–537 https://doi.org/10.1080/01490451.2016.1225866.
Mortazavi H., Kariminia B. T., Shahbodagh B., Rowshanzamir M. A., and Khoshghalb A. (2021). Application of bio-cementation to enhance shear strength parameters of the soil-steel interface, Journal of Construction and Building Materials, 294 123470. https://doi.org/ 10.1016/ j.conbuildmat. 2021.123470.
Mwandira W., Nakashima K., Kawasaki S., Sato T., Igarashi T., Chirwa M., Ito M., Banda K., Nyambe I., Nakayama S., Nakata H., and Ishizuka M. (2019). Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. Chemosphere 228 17-25. https://doi.org/10.1016/j.chemosphere.2019.04.107.
Nemati, M., Greene, E.A., Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option”, Process Biochemistry, vol. 40: 925-933. 10.1016/J.PROCBIO.2004.02.019.
Ng, W.S., Lee, M.L., Hii, S.L. (2012). An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement. World Academy of Science, Engineering and Technology, 62: 723-729.  doi.org/10.5281/zenodo.1084674
Perrot A., Rangeard D., Picandet V., and Serhal S. (2015). Effect of coarse particle volume fraction on the hydraulic conductivity of fresh cement-based material, Materials and Structures, 48 (7) 2291–2297. https://doi.org/10.1617/s11527-014-0311-x.
Rahman M.M., Hora R.N., Ahenkorah I.,  Beecham S., Karim M.R., and Iqbal A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications, Sustainability 2020, 12, 6281 https://doi.org/10.1080/01490451.2016.1225866.
Ritvo, G., Dassa, O., Kochba, M. (2003). "Salinity and pH effect on the colloidal properties of suspended particles in super intensive aquaculture systems" Aquac. vol.218: 379-386. https://doi.org/10.1016/S0044-8486(02)00652-X
Rowshanbakht K., Khamehchiyan M., Sajedi R.H., and Nikudel M.R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial improvement. Ecological Engineering 89  49-55. http://dx.doi.org/10.1016/j.ecoleng.2016.01.010.
Safavizadeh S., Montoya B.M., and Gabr M.A.(2019). Microbial induced calcium carbonate precipitation in coal ash, G´eotechnique, vol. 69, no. 8, 727–740. https://doi.org/10.1680/jgeot.18.P.062.
Salifu E., MacLachlan E., Iyer K.R., Knapp C.W., and Tarantino A. (2016). Application of microbially induced calcite precipitation in erosion mitigation and stabilization of sandy soil foreshore slopes: a preliminary investigation, Engineering Geology 201 96–105. https://doi.org/10.1016/j.enggeo.2015. 12.027.
Sarda, D., Choonia, H., Sarode, D., and Lele, S. (2009). Biocalcification by Bacillus Pasteurii urease: a novel application.J. Ind. Microbiol.Biotechnol.36, 1111–1115. https://doi.org/10.1007/s10295-009-0581-4.
Sharaky A. M., Mohamed N. S., Elmashad m., Shredah N.M. (2018). Application of microbial biocementation to improve the physico-mechanical properties of sandy soil, Construction and Building Materials 190 (2018) 861–869. https://doi.org/10.1016/j.conbuildmat.2018.09.159
Sharma A., and Ramakrishnan R. (2016). Study on the effect of microbial induced calcite precipitates on the strength of fine grained soils, Perspect. Sci. 8 198–202. https://doi.org/ 10.1016/ j.pisc. 2016.­03.­017.
Soon N.W., Lee L.M., Khun T.C., and Ling H.S. (2014). Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation, J. Geotech. Geoenviron. Eng. 140 (5) 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.00010.
Stocks-Fischer S., Galinat J.K., and Bang S.S. (1999). Microbiological precipitation of caco3, Soil Biology and Biochemistry 31 (11) 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Tobler D.J., Maclachlan E., and Phoenix V.R. (2012). Microbially mediated plugging of porous media and the impact of different injection strategies, Ecological Engineering 42 270–278. https://doi.org/ 10.1016/j.ecoleng.2012.02.027.
Torkzaban, S., Tazehkand, S.S., Walker, S.L., Bradford, S.A. (2008). Transport and fate of bacteria in porous media: coupled effects of chemical conditions and pore space geometry. Water Resources Research 44: 1–12. https://doi.org/10.1029/2007WR006541Tsukamoto M., Inagaki T., Sasaki Y. Oda K. (2013). Influence of relative density on microbial carbonate precipitation and mechanical properties of sand. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering,Paris.
Umar M., Kassim K. A., and Ping Chiet K. T. (2016). Biological process of soil improvement in civil engineering: a review, Journal of Rock Mechanics and Geotechnical Engineering, vol. 8, no. 5, 767–774. https://doi.org/10.1016/j.jrmge.2016.02.004.
Van Paassen, L.A. (2009). “Biogrout: Ground Improvement by Microbially Induced Carbonate Precipitation”. PhD Delft: Delft University of Technology.
van Paassen, L. A., C.M. Daza, C.M., Staal M., Sorokin D.Y., Van der Zon W., and van Loosdrecht C.M. (2010), Potential soil reinforcement by biological denitrification, Ecological Engineering  36 (2) 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen L.A. (2011), Bio-mediated ground improvement: from laboratory experiment to pilot applications. The Geo-Frontiers 2011 Conference: Advances in Geotechnical Engineering, Dallas, TX, ASCE Geotechnical Special Publication 211, 4099-4108. https://doi.org/10.1061/41165(397)419.
Wang X., Tao J., Bao R., Tran T., and Tucker-Kulesza S. (2018). Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation, Journal of Materials in Civil Engineering 30 (10) 04018267. https://doi.org/10.1061/(ASCE)MT.1943-5533. 0002490.
Wen K., Li Y., Liu S., Bu C., and Li L. (2019). Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple improvements in low cementation media concentration, Geotechnical and Geological Engineering 37 (2) 1015–1027. https://doi.org/10.1007/s10706-018-0669-6.
Whiffin V.S., van Paassen L.A., and Harkes M.P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24 (5), 417–423. https://doi.org/ 10.1080/ 01490450701436505.
Xu x., Guo H., Li M., and Deng X. (2021). Bio-cementation improvement via CaCO3 cementation pattern and crystal polymorph: A review, Construction and Building Material J. 297 (2021) 123478. https://doi.org/10.1016/j.conbuildmat.2021.123478
Zamani A., Liu Q., and Montoya B.M. (2018). the effect of microbial induced carbonate precipitation on the stability of mine tailings, IFCEE 2018 291–300. https://doi.org/10.1061/9780784481615.024.
Zhang Y., Guo H., and Cheng X. (2014). Influences of calcium sources on microbially induced carbonate precipitation in porous media, Mater. Res. Innovat. 18 (sup2). S2-79-S2-84. https://doi.org/ 10.1179/ 1432891714Z.000000000384.
 Zhao Y., Fan C., Liu P., Fang H., Huang Z. (2018). Effect of activated carbon on microbial-induced calcium carbonate precipitation of sand, Environmental Earth Sciences 77 (17) 615. https://doi.org/10. 1007/s12665-018-7797-4.
Zhiguang h., Xiaohui Ch., Qiang Ma., An experimental study on dynamic response for MICP strengthening liquefiable sands, Earthq Eng & Eng Vib (2016) 15: 673-679. doi:10.1007/s11803-016-0357-6